Chapter 29: Electromagnetic Waves Thursday November $10^{\text {th }}$

Mini-exam 5 next Thursday (AC circuits and EM waves) 55 unregistered iClickers - any takers?
-Transformers - demo

- Maxwell's equations
- Electromagnetic waves
- Wave equations
- Speed of light
- Relations between quantities
- Energy flux and intensity

Reading: up to page 515 in the text book (Ch. 28/29)

Transformers

Primary Secondary

- Flux the same on both sides, but number of turns, N, is different
- Total flux through primary and secondary coils depends on N_{1} and N_{2}

$$
V_{1}=N_{1} \Phi ; \quad V_{2}=N_{2} \Phi ; \quad \Rightarrow \frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}}
$$

The basic equations of electromagnetism so far.

Gauss' law:

$$
\Phi_{E}=\oint \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{A}}=\frac{q_{e n c}}{\varepsilon_{o}}
$$

Gauss' law for B (no magnetic equivalent of charge):

$$
\Phi_{B}=\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{A}}=0
$$

Ampère's law:

$$
\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{l}}=\mu_{0} I_{e n c}
$$

Faraday's law:

$$
\varepsilon=\oint \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{l}}=-\frac{d \Phi_{B}}{d t}
$$

The basic equations of electromagnetism

$$
\left.\begin{array}{l}
\Phi_{E}=\oint \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{A}}=0 \\
\Phi_{B}=\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{A}}=0
\end{array}\right\} \text { Symmetry }
$$

Is it possible that a time-varying electric field could produce a magnetic field, thereby restoring symmetry?

Maxwell's displacement current

The choice of surface
should not matter

Maxwell's displacement current

Maxwell's equations

Table 29.2 Maxwell's Equations

Law	Mathematical Statement	What It Says
Gauss for \vec{E}	$\oint \vec{E} \cdot d \vec{A}=\frac{q}{\epsilon_{0}}$	How charges produce electric field; field lines begin and end on charges.
Gauss for \vec{B}	$\oint \vec{B} \cdot d \vec{A}=0$	No magnetic charge; magnetic field lines don't begin or end.
Faraday	$\oint \vec{E} \cdot d \vec{r}=-\frac{d \Phi_{B}}{d t}$	Changing magnetic flux produces electric field.
Ampère	$\oint \vec{B} \cdot d \vec{r}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}$	Electric current and changing electric flux produce magnetic field.

The main thing to note here is the symmetry in the last two equations: a time varying magnetic field produces an electric field: similarly, a time varying electric field produces a magnetic field.

Maxwell's equations in vacuum

$$
\begin{aligned}
& \Phi_{E}=\oint \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{A}}=0 \\
& \Phi_{B}=\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{A}}=0 \\
& \oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{l}}=\mu_{o} \varepsilon_{0} \frac{d \Phi_{E}}{d t} \\
& \oint \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{l}}=-\frac{d \Phi_{B}}{d t}
\end{aligned}
$$

The main thing to note here is the symmetry in the last two equations: a time varying magnetic field produces an electric field; similarly, a time varying electric field produces a magnetic field.

Electromagnetic waves

Electromagnetic perturbation breaks completely free from the charge/current

Electromagnetic waves

No radiation along axis

Fraunhoffer Region
Maxwell's equations guarantee that electric and magnetic fields are perpendicular to each other and perpendicular to the direction of propagation: they are polarized.

Maxwell's equations in vacuum

$$
\begin{gathered}
\Phi_{E}=\oint \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{A}}=0 \\
\Phi_{B}=\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{A}}=0 \\
\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{l}}=\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{d \Phi_{E}}{d t} \\
\oint \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{l}}=-\frac{d \Phi_{B}}{d t}
\end{gathered}
$$

Stokes' Theorem:
Gives differential form of Maxwell's equ'ns

$$
\begin{gathered}
{\left[\nabla \times \overrightarrow{\boldsymbol{B}}=\mu_{0} \varepsilon_{0} \frac{d \overrightarrow{\boldsymbol{E}}}{d t}\right]} \\
{\left[\nabla \times \overrightarrow{\boldsymbol{E}}=-\frac{d \overrightarrow{\boldsymbol{B}}}{d t}\right]}
\end{gathered}
$$

Let there be light!!

Stokes' Theorem:
Gives differential form of Maxwell's equ'ns

$$
\nabla \times \overrightarrow{\boldsymbol{B}}=\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{d \overrightarrow{\boldsymbol{E}}}{d t}
$$

$$
\nabla \times \overrightarrow{\boldsymbol{E}}=-\frac{d \overrightarrow{\boldsymbol{B}}}{d t}
$$

Maxwell's equations in vacuum can be solved simultaneously to give identical differential equations for E and B :

$$
\begin{aligned}
& \nabla^{2} \overrightarrow{\boldsymbol{E}}=\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{\partial^{2} \overrightarrow{\boldsymbol{E}}}{\partial t^{2}} \quad \text { and } \quad \nabla^{2} \overrightarrow{\boldsymbol{B}}=\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{\partial^{2} \overrightarrow{\boldsymbol{B}}}{\partial t^{2}} \\
& \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \quad \begin{array}{l}
\text { The Laplacian differential } \\
\text { operator }
\end{array} \\
& \text { The Electromagnetic Wave Equations }
\end{aligned}
$$

Let there be light!!

Stokes' Theorem:

Gives differential form of Maxwell's equ'ns

$$
\nabla \times \overrightarrow{\boldsymbol{B}}=\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{d \overrightarrow{\boldsymbol{E}}}{d t}
$$

$$
\nabla \times \overrightarrow{\boldsymbol{E}}=-\frac{d \overrightarrow{\boldsymbol{B}}}{d t}
$$

Maxwell's equations in vacuum can be solved simultaneously to give identical differential equations for E and B :

$$
\frac{\partial^{2} \overrightarrow{\boldsymbol{E}}}{\partial x^{2}}=\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{\partial^{2} \overrightarrow{\boldsymbol{E}}}{\partial t^{2}} \quad \text { and } \quad \frac{\partial^{2} \overrightarrow{\boldsymbol{B}}}{\partial x^{2}}=\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{\partial^{2} \overrightarrow{\boldsymbol{B}}}{\partial t^{2}}
$$

Waves in one-dimension (traveling along x)

The Electromagnetic Wave Equations

THE ELECTRO MAGNETIC SPECTRUM

1 metre $=100 \mathrm{~cm} \quad 1 \mathrm{~cm}=10 \mathrm{~mm} \quad 1$ millimetre $=1000$ microms 1 micron $=1000$ nanometres (nm)- one nanometer is one bilionth of a metre $10^{-5}=0.00001 \quad 10^{5}=100,000$

Wave (type)
Radio Microwave Unfrared Visible Ultraviolet

Football Field Humans

	LOWER			FREQUENCY - htz (waves per second)								HGGER			
1	1	T	1	1	1	T	T	T	T	T	T	T	1	1	T
10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	10^{11}	10^{12}	10^{13}	10^{14}	10^{15}	10^{16}	10^{17}	10^{-18}	10^{19}	10^{20}	10^{21}

Electromagnetic Redlation detected by the humam eye is called visible				light and falls between 700 and 400 nano metres		
Radio	Microwave		Infrared	Uliraviolet	X-Ray	Gamma Ray
VISIBLE LIGHT						
700 nm		600 nm		500 nm		400 nm

Review of waves (PHY2048)

(b)

(c)

$k=\frac{2 \pi}{\lambda} \quad k$ is the angular wavenumber.
$\omega=\frac{2 \pi}{T} \quad w$ is the angular frequency.

$$
\text { frequency } \quad f=\frac{1}{T}=\frac{\omega}{2 \pi}
$$

velocity $v=\mp \frac{\omega}{k}=\mp \frac{\lambda}{T}=\mp f \lambda$

Electromagnetic waves

-The E and B fields are still related via Ampère's and Faraday's laws.
-For a plane wave traveling in the x direction (see text):

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{E}}(x, t)=E_{\mathrm{p}} \sin (k x-\omega t) \hat{\boldsymbol{j}} \\
& \overrightarrow{\boldsymbol{B}}(x, t)=B_{\mathrm{p}} \sin (k x-\omega t) \hat{\boldsymbol{k}}
\end{aligned}
$$

Electromagnetic waves

-The E and B fields are still related via Ampère's and Faraday's laws.
-For a plane wave traveling in the x direction (see text):

$$
\frac{\partial E_{z}}{\partial x}=\frac{\partial B_{y}}{\partial t}, \quad \frac{\partial E_{y}}{\partial x}=-\frac{\partial B_{z}}{\partial t}, \quad E_{x}=B_{x}=0
$$

Electromagnetic waves

- Plugging these wave solutions into the wave equation:

$$
\begin{aligned}
& \nabla^{2} E_{y}=-k^{2} E_{y}=\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} \frac{\partial^{2} E_{y}}{\partial t^{2}}=-\omega^{2} \mu_{\mathrm{o}} \varepsilon_{\mathrm{o}} E_{y} \\
& \Rightarrow \frac{\omega^{2}}{k^{2}}=c^{2}=\frac{1}{\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}}}, \quad \text { or } \quad c=\sqrt{\frac{1}{\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}}}}
\end{aligned}
$$

-Plugging these wave solutions into Faraday's law:

$$
\begin{gathered}
\frac{\partial E_{y}}{\partial x}=k E_{\mathrm{p}} \cos (k x-\omega t)=-\frac{\partial B_{z}}{\partial t}=\omega B_{\mathrm{p}} \cos (k x-\omega t) \\
\Rightarrow \frac{E_{\mathrm{p}}}{B_{\mathrm{p}}}=\frac{\omega}{k}=c
\end{gathered}
$$

