Chapter 29: Electromagnetic Waves
Thursday November 10t

Mini-exam 3 next Thursday (AC circuits and EM waves)
55 unregistered iClickers — any takers?

‘Transformers - demo
‘Maxwell’s equations

‘Electromagnetic waves
‘Wave equations
Speed of light
-Relations between quantities
‘Energy flux and intensity

Reading: up to page 515 in the text book (Ch. 28/29)
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The basic equations of electromagnetism

, so far.....
Gauss law:
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Gauss’ law for B (no magnetic equivalent of charge):
®,=¢B-dA=0

Ampeére’ s law:
%B . dl — MOIBTZC

Faraday’ s law:




The basic equations of electromagnetism

so far.....
In vacuum:

Is it possible that a time-varying electric field could
produce a magnetic field, thereby restoring symmetry?



Maxwell's displacement current
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Stokes’ theorem:
The choice of surface
should not matter



Maxwell's displacement current
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Stokes’ theorem:
The choice of surface
should not matter




Maxwell’'s equations

Table 29.2 Maxwell’s Equations

Law Mathematical Statement What It Says
- ey g3 How charges produce electric
Gauss for E E-dA = field; field lines begin and
end on charges.
= = _ No magnetic charge; magnetic
A 1050 %B dA = field lines don’t begin or end.
- d(DB Changing magnetic flux
Faraday E-dr = produces electric field.
. oy dd, Electric current and changing
Ampere %B dr = ol + e ds electric flux produce magnetic
field.

The main thing to note here is the symmetry in the last
two equations: a time varying magnetic field produces an
electric field: similarly, a time varying electric field
produces a magnetic field.



Maxwell’'s equations in vacuum

®,=¢E-dA=0

B
B-dl P,
. p— 8
//LO (@) dt
L. 4o
5/5 E-dl = B
dt

The main thing to note here is the symmetry in the last
two equations: a time varying magnetic field produces an
electric field: similarly, a time varying electric field
produces a magnetic field.



Electromagnetic waves
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Field does not appear L
instantaneously

Electromagnetic perturbation

Propagation breaks completely free from
the charge/current



Electromagnetic waves

‘resnel Zone
Plane
waves —— A —
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Spherical

waves

No radiation : .
along axis Fraunhoffer Region

Maxwell’'s equations guarantee that electric and magnetic
fields are perpendicular to each other and perpendicular to

the direction of propagation; they are polarized.



Maxwell’'s equations in vacuum
®,=¢E-dA=0
Stokes’ Theorem:

O = 45 B-dA=0 Gives differential form
B

of Maxwell’s equ’ns

L AP B} dE
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G E-dl = ® VxE=-22
dt | dt




Let there be light!!
Stokes’ Theorem: N d Ew
Gives differential form VXxB = pE. E

of Maxwell’s equ’ns

Vxﬁz—d—B
dt

Maxwell’ s equations in vacuum can be solved simultaneously
to give identical differential equations for £ and B:

2 T 2
- E = B
V’E = I E %7 and V’B= IE %tQ
V2 — 0 0 2 L0 2 The Laplacian differential
dz> Oy 02 operator

The Electromagnetic Wave Equations



Let there be light!!
Stokes’ Theorem: N d Ew
Gives differential form VXxB = pE. E

of Maxwell’s equ’ns

Vxﬁz—d—B
dt

Maxwell’ s equations in vacuum can be solved simultaneously
to give identical differential equations for £ and B:

aQE*_M O°E - a?é_m 0’B
6332 0O O atQ 8332 0O O 8t2

Waves 1n one-dimension (traveling along x)

The Electromagnetic Wave Equations



THE ELECTRO MAGNETIC SPECTRUM
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Bectromagnetic Radiation detectad by the humam eye s called visible
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Revnew of waves (PHY2048)

Amplitude Phase

/f’l ) / ' | g D 1
( + + 1Sp a\cement \ | A
y(x,t) = Asin(kx £ @t + @)

/ \
SN SN angular wavenumber Phase
L LT angular frequency shift

k= Z_ﬂ. k is the angular wavenumber.

Transverse wave
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Electromagnetic waves

*The E and B fields are still related via Ampére's and
Faraday's laws.

‘For a plane wave traveling in the x direction (see text):

E(a:,t) =F sin(kx — wt)3

p

B(x,t) =B sin(kx — wt)lAc

p

y Direction of motion




Electromagnetic waves

*The E and B fields are still related via Ampere's and
Faraday's laws.

‘For a plane wave traveling in the x direction (see text):

OF 0B OF 0B
A— y, y — 27 E:B:O
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Electromagnetic waves

‘Plugging these wave solutions into the wave equation:

2 2 82E 2
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‘Plugging these wave solutions into Faraday's law:
OF 0B
L =kFE Cos(kx — wt) = ¢ = whB cos(kx — wt)
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